Search results for "Fusion reactions"

showing 4 items of 4 documents

New gas-filled mode of the large-acceptance spectrometer VAMOS

2010

A new gas-filled operation mode of the large-acceptance spectrometer VAMOS at GANIL is reported. A beam rejection factor greater than 10(10) is obtained for the Ca-40+Sm-150 system at 196 MeV. The unprecedented transmission efficiency for the evaporation residues produced in this reaction is estimated to be around 80% for alpha x n channels and above 95% for x ny p channels. A detailed study of the performance of the gas-filled VAMOS and future developments are discussed. This new operation mode opens avenues to explore the potential of fusion reactions in various kinematics. (C) 2010 Elsevier B.V. All rights reserved.

PhysicsNuclear and High Energy PhysicsSpectrometer010308 nuclear & particles physicsGas-filled spectrometerMode (statistics)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesNuclear physicsNuclear magnetic resonanceOperation mode0103 physical sciencesBeam rejectionNuclear fusionTransmission[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentationBeam (structure)Fusion reactions
researchProduct

The Role of Combined ICRF and NBI Heating in JET Hybrid Plasmas in Quest for High D-T Fusion Yield

2017

Combined ICRF and NBI heating played a key role in achieving the world-record fusion yield in the first deuterium-tritium campaign at the JET tokamak in 1997. The current plans for JET include new experiments with deuterium-tritium (D-T) plasmas with more ITER-like conditions given the recently installed ITER-like wall (ILW). In the 2015-2016 campaigns, significant efforts have been devoted to the development of high-performance plasma scenarios compatible with ILW in preparation of the forthcoming D-T campaign. Good progress was made in both the inductive (baseline) and the hybrid scenario: a new record JET ILW fusion yield with a significantly extended duration of the high-performance pha…

TokamakQC1-999Nuclear engineering7. Clean energy01 natural sciencesFusió nuclear controlada010305 fluids & plasmasPlasma currentlaw.inventionlawNBI heating0103 physical sciencesNeutron010306 general physicsFusionFusion reactionsHigh D-T Fusion YieldPhysicsFusionJet (fluid):Física [Àrees temàtiques de la UPC]ICRFbusiness.industryPhysicsElectrical engineeringPlasmaYield (chemistry)Beta (plasma physics)JET Hybrid PlasmasNBI Heatingbusiness
researchProduct

Spin distribution measurement for 64Ni + 100Mo at near and above barrier energies

2015

Spin distribution measurements were performed for the reaction 64 Ni + 100 Mo at three beam energies ranging from 230 to 260 MeV. Compound nucleus (CN) spin distributions were obtained channel selective for each evaporation residue populated by the de-excitation cascade. A comparison of the spin distribution at different beam energies indicates that its slope becomes steeper and steeper with increasing beam energy. This change in slope of the spin distribution is mainly due to the onset of fission competition with particle evaporation at higher beam energies.

PhysicsFissionPhysicsQC1-999fusion reactions ; spin distributionsEvaporation7. Clean energyDistribution (mathematics)CascadeParticlePhysics::Accelerator PhysicsCondensed Matter::Strongly Correlated ElectronsAtomic physicsBeam energyBeam (structure)Spin-½EPJ Web of Conferences
researchProduct

Modelling of combined ICRF and NBI heating in JET hybrid plasmas

2017

During the 2015-2016 JET campaigns many efforts have been devoted to the exploration of high performance plasma scenarios envisaged for ITER operation. In this paper we model the combined ICRF+NBI heating in selected key hybrid discharges using PION. The antenna frequency was tuned to match the cyclotron frequency of minority hydrogen (H) at the center of the tokamak coinciding with the second harmonic cyclotron resonance of deuterium. The modelling takes into account the synergy between ICRF and NBI heating through the second harmonic cyclotron resonance of deuterium beam ions which allows us to assess its impact on the neutron rate RNT. We evaluate the influence of H concentration which w…

TokamakQC1-999CyclotronCyclotron resonance01 natural sciences7. Clean energyFusió nuclear controlada010305 fluids & plasmaslaw.inventionlawNBI heating0103 physical sciencesNeutron010306 general physicsFusion reactionsICRF and NBI heatingJet (fluid)ICRF:Física [Àrees temàtiques de la UPC]ChemistryPhysicsPlasmaFusion powerComputational physicsJET hybrid plasmasHarmonicAtomic physicsEPJ Web of Conferences
researchProduct